Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cai-Feng Ding, Yue-Qin Yu, Mei-Ling Zhang, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.107$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)dinitratoiron(II)

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the Fe atom is six-coordinated in an octahedral geometry by O and N atoms. The water molecules act as donors in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, linking the molecules into chains along the c axis. The chains are connected into a three-dimensional framework by other $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

Metal-phenanthroline complexes are good indicators for the hybridization detection of DNA in electrochemical biosensors (Wang et al., 1996). In our search for new indicators (Zhang et al., 2005), the title complex, (I), was synthesized. Here we report its structure.

(I)

The $\mathrm{Fe}^{\mathrm{II}}$ atom is six-coordinated by two N atoms from the 9,10-dimethylphenathroline ligand and four O atoms from two nitrate anions and one water molecule (Fig. 1). The geometry around the Fe atom is octahedral (Table 1). All bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, the water molecules act as donors, forming $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). These hydrogen bonds involving the nitrate anions link the molecules into chains along the c axis (Fig. 2). The chains are connected into a three-dimensional framework by other O $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The short $C g 5 \cdots C g 5^{\text {iv }}$ distance of $3.572 \AA[C g 5$ is the centroid of the C5C8/C12/C13 ring; symmetry code: (iv) $1-x,-1-y,-z]$ indicates $\pi-\pi$ stacking interactions between the phenanthroline ring systems.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline ($0.21 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added a solution of anhydrous $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(0.12 \mathrm{~g}$, 1 mmol) in distilled water (10 ml). The mixture was stirred and reluxed for 9 h . The hot solution was then filtered into another flask

Received 5 July 2006
Accepted 13 July 2006
\qquad

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Figure 2
A view of part of the packing of (I) down the b axis, showing the chains. Intermolecular hydrogen bonds are denoted by dashed lines.
containing ethanol-water (1:2 v/v). Brown crystals of (I) appeared over a period of one week by slow evaporation at room temperature.

Crystal data

[$\left.\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=406.14$
Monoclinic, $P 2_{1} / c$
$a=11.1447$ (13) £
$b=10.8137$ (13) A
$c=15.0625(14) \AA$
$\beta=113.306$ (7) ${ }^{\circ}$
$V=1667.1(3) \AA^{3}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.777, T_{\max }=0.919$
$Z=4$
$D_{x}=1.618 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.95 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Brown, plate
$0.28 \times 0.19 \times 0.09 \mathrm{~mm}$

9395 measured reflections 3287 independent reflections
2747 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=26.1^{\circ}$

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. \& Dontha, N. (1996). Anal. Chem. 68, 2629-2634.
Zhang, S.-S., Niu, S.-Y., Qu, B., Jie, G.-F., Xu, H. \& Ding, C.-F. (2005). J. Inorg. Biochem. 99, 2340-2347.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0646 P)^{2}\right.} \\
&+0.2884 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{O} 1 W$	$2.077(2)$	$\mathrm{Fe} 1-\mathrm{O} 4$	$2.133(2)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.115(2)$	$\mathrm{Fe} 1-\mathrm{O} 1$	$2.213(2)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.1244(19)$	$\mathrm{Fe} 1-\mathrm{O} 5$	$2.310(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and $C g 2$ denote the centroids of the $\mathrm{Fe} 1 / \mathrm{O} 4 / \mathrm{O} 5 / \mathrm{N} 4$ and $\mathrm{Fe} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 12 /$ C13 rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}{ }^{\text {i }}$	1.01 (4)	2.46 (4)	3.089 (4)	120 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\text {i }}$	1.01 (4)	1.83 (4)	2.824 (3)	166 (4)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 6^{\text {ii }}$	0.84 (5)	1.96 (5)	2.780 (3)	167 (5)
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6^{\text {iii }}$	0.93	2.54	3.416 (4)	158

Symmetry codes: (i) $x,-y-\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x,-y,-z$; (iii) $x+1,-y-\frac{1}{2}, z+\frac{1}{2}$.

C-bound H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C). The H atoms of the water molecule were located in a difference Fourier map and refined freely.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

[^0]: (C) 2006 International Union of Crystallography All rights reserved

